Se University or Idaho

Food Additive Safety Assessment

Food Toxicology Instructor: Gregory Möller, Ph.D. University of Idaho

Learning Objectives

- Understand the background and principles of safety assessment of food additives.
- Review the quantitative assessment of dietary exposure to food additives and the development of concern levels.
- Explore the basics of testing related to food additive safety.
- Explore the relationship between food type & food packaging in food additive safety assessment.
- Understand the interaction of the Delaney Clause and food additive regulation.

Food Additive

- A substance which may, by its intended use, become a component of food, either directly or indirectly, or which may otherwise affect the characteristics of food.
 - Includes any substance intended for use in producing, manufacturing, processing, preparing, treating, packaging, transporting or holding food, and any source of radiation intended for such use.

Scope of Food Additives

- ~3000 additives
- ~1800 flavoring agents
- Texturing agents used in highest quantity
- · Soft drinks are biggest market
- 4 direct food additives = 93% of total

 Sucrose, salt, corn syrup, dextrose

Six Categories of Food Additives

- Emulsifiers

- Stabilizers

Miscellaneous

Enzymes

Texture

- Preservatives
 - Antimcrobial
 - Antibrowning
 - Antioxidant
- Nutritional
 - Vitamins/minerals
 - s Catalysts – Solvents
 - Propellants
 - Flavor enhancersSweeteners
 - Nat/syn flavors
- Color
- 0010

Flavor

Consumption of Food Additives

- 139 lbs/year/person
- 5 lbs/year if remove common ones
- Spices, sugars, salt, honey, pepper, mustard, dextrose, etc
- 75% people concerned about food additives
- 60% try to avoid
- 6% could name one

Consumption of Color Additives

- Estimated max = 53 mg/da
- Estimated average = 15 mg/da
- About 10% of foods contain food coloring

Food Additives Numbering Systems

• E System

Developed by the European Economic Community (EEC)Number and description

- e.g. "E123 Amaranth, Colour Red"
- Additives considered safe and allowed between countries
- Nutrient additives not included

Food Additives Numbering Systems

- International Numbering System
- Developed by Codex Alimentarius
 - Commission Committee on Food Additives and
 - Contaminants
 - Broader than E system
 - e.g. "491 Sorbitan Monostearate; Emulsifiers and Stabilisers; salts or Esters of Eatty Acids"
- Does not imply toxicology approval
 - INS largely E w/o E in number
 - 23 functional classes

Food AdditivesDirect food additives

- Certified color additives
- Exempt color additives
- Unintentional additives

 Tolerance based; Action level based

Exempt Chemicals

- GRAS (Generally Recognized as Safe)
 - From scientific studies or wide usage
 - Salt, vitamins, etc.
 - GRAS qualified experts determined safe
 - May not be FDA decision (GRAS)
 - Company can self-proclaim (GRAS)
- "Prior Sanctioned" before 1958
 - Prior sanctioned approved by FDA/USDA prior to 1958
 - Sodium nitrite, etc.

1

GRAS Ingredients

Not food additives

Food additive NH, HCO

- Exempt for pre-market clearance but must be supported by safety data
- Exempt from <u>Delaney Clause</u>
- GRAS list in CFR is not inclusive – Leaves FDA some leeway

ŀ

GRAS Ingredients: 1997 Changes

- Not all GRAS petitions will be rigorously reviewed
- Company will submit intention to list as GRAS
- FDA may or not review
- Speeds process and better directs resources

Regulated Food Additive

- Food additives that are not color, or GRAS, or prior sanctioned
- Require FDA approval
- Scientific data that no harm will occur

 "Redbook" guidelines
- Must justify function
- 32 categories (C&D)

Food Additives Approved Since 1970

- Sucralose acetate isobutyrate 1999
- Sucralose 1998
- Olestra 1996
- Gellan gum 1990
- Acesulfame K 1988
- Polydextrose 1981
- Aspartame 1981
- TBHQ 1970

15

Color Additives

- Same testing as food additives
- Not eligible as GRAS
- Tested at all FDA concern levels
- Two types
 - Certified by FDA chemists for purity
 - Exempt mostly naturally occurring

Calibring 2508 1 Pack	Cholest, Smo	1%	Sugara 25g	
Fat Calories 120	Sodium 25mg	1%	Protein 5g	-
** Present Daily Values (DV) are balant on a 2.000 calorie dist.	Vitamin A* Vita Thiamine 2%	Ribof	Calcium 4% Inc Infin 4% Miaci te Deby Value of these	n 2%
NUMBER OF ADDRESS OF	AUTORNI CANCER PROMIN	1000	And in Concession, State	UTE ST

Certified Color Additives

- Prefix of FD&C
 - Two exemptions: Orange C, Citrus Red 2
- Every batch must be FDA certified
- Aromatic amines, aromatic azos
 - Unusually nontoxic for these compounds

Exempt Color Additives

• Usually naturally occurring (25)

- Dried algae, beet powder, grape skin extract, fruit juice, caramel, etc.
- Lack precise chemical identity
- Fade readily, lack intensity and uniformity
- Higher levels required
- Used less (except caramel)

17

Contaminant Tolerances

- For unavoidable contaminants
- Acceptable level established
- Any food cannot exceed level
- Enforceable levels
 - PCB, metals, Nitrosochemicals

-	18: *** -		Dicken - Sea	
		and the second	im ASea	
		Chicken /	Chicken 7:5u	
	0		Dicken 7/50	Dicken
	Chick	Sea	Nichen Walses	Chief
		Too is a	Selan VaSer	Le Carrie

Contaminant Action Levels

- Informal tolerances
- Not legally enforceable
- Allow flexibility between different foods (e.g. aflatoxin)
- Based on estimated exposures

Unintentional Food Additives

- Packaging materials
 - BHA/BHT, PCP, polymers, metals
- Processing chemicals
- PAH (from cooking), solvents (from extractions)
- Environmental
 - Natural and anthropogenic
 - Pb, Hg, pesticides, fumigants

Tests Required

- FDA Redbook Guidance
- Toxicological Principles for the Safety Assessment of Direct Food Additives and Color Additives Used in Food
- What is the safe dose (ADI)?

Definitions

- <u>Reference Dose (RfD):</u> An estimate (with uncertainty spanning perhaps an order of magnitude) of a daily oral exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime.
 - Can be derived from a NOAEL, LOAEL, or benchmark dose, with uncertainty factors generally applied to reflect limitations of the data used.
- <u>Acceptable Daily Intake (ADI):</u> The amount of a chemical a person can be exposed to on a daily basis over an extended period of time (usually a lifetime) without suffering deleterious effects.

Safety Testing of Food Additives

- Acute/Short-term = LD₅₀, DRC
- Subchronic MTD
- Chronic NOAEL, ADI, RfD
- Carcinogenic/Mutagenic
- Developmental toxicity
- Immunotoxicity
- Neurotoxicity
- Metabolic, analytical, etc.

2

Estimating Exposures

- Must establish Estimated Daily Intake (EDI) for:
 - Direct food and color additives
 Indirect food additives
- The sum of EDIs for an additive from all sources cannot exceed the RfD/ADI

Direct Food Additives

- Estimated daily intake
 - [Amount of food consumed daily] x [concentration of additive in food]
- EDI = concentration (C) x intake (I)
- Sum of all sources of additive in food and non-food
- Unique number for each direct additive

Direct Food Additives Estimating Consumption

- Level of additive in food category
- Daily intake of each food category containing additive
- Distribution of intakes in population groups
- Exposure from non-food sources

Concentrations in Food Direct Additives

- Determined by manufacturer
- Assume highest level allowable
- Assume processor uses GMP
 and does not abuse levels

Regulatory Food Categories (43)

• Baked goods and baking mixes

- Ready to eat and ready to cook products
- Doughnuts, bread, croissants, cake mix, cookie dough
- Beverages alcoholic
 - Beer, wine, liquor, cocktail mix

Food Categories (43)

• Beverages - nonalcoholic

- Special/spiced teas, soft drinks, coffee substitutes, fruit/vegetable drinks
- Breakfast cereals
- Ready to eat and instant, regular hot cereals
- Of 43 total; see CFR 21, 170.3(n)

Food Consumption Surveys

- National Food Consumption Survey
 USDA 1987-8
- Continuing Survey of Food Intakes by Individuals

 USDA 1985-91
- Estimates of Daily Intake – NAS/NRC 1979
- FDA Total Diet Study 1987

Food Consumption Survey Problems

- <u>3 –</u> 14 day snapshots
- Lack of detail
- Age, ethnic group, food groups
- Some are outdated food groups
- Not always "user friendly"

Estimated Daily Intake

- Establish EDI
- Assign Concern Level (CL)

Food Safety Concern Levels (CLs)

- Three levels CLI, CLII, CLIII
- Based on "structure-activity" relationships to known toxic chemicals
- Based on structural and functional groups

 Category A, B, C
- Based on exposure level****

34

Toxicity Categories

- Category A
 - Low toxic potential
- Category B
 - Intermediate or unknown toxicity
- Category C
 - High degree of toxic concern

Concern Levels and Exposure Levels

A	В	С	CL
<0.05	<0.025	0.0125	I
0.05	0.025	0.0125	II
1.0	0.5	0.25	III

- Values in ppm (mg/kg) in food
- Much more emphasis on exposure
- Lower exposure less testing

Food Additive Safety Summary

- Estimate daily intake (EDI)
- Determine toxicity rating (A, B, C)
 C = higher toxicity
- Assign CL (I, II, III)
 - III highest concern,Most testing
 - Exposure carries more weight
- CL determines toxicity tests required

CLs and Toxicity Testing

<u>CL I</u>

- Short-term repeated dose study

 Not less than 28 days
- Short-term carcinogen tests
 - Genetic toxicity
 - Ames assay, etc

CLs and Toxicity Testing

<u>CL II</u>

- Subchronic 90 da 2 species
- Multigeneration (2) reproduction study with teratology phase
- Short-term carcinogen

CLs and Toxicity Testing

<u>CL III</u>

- Carcinogen studies rats and mice
- Chronic feeding study 1yr may be combined with carcinogen study
- Chronic study in non-rodent 1yr
- Multigeneration (2) reproduction with teratology phase
- Short-term carcinogen study

Toxicity Tests	Concern Level		
	I	II	III
Short-term for genetic toxicity	Х	Х	Х
Metabolism and pharmacokinetics		Х	Х
Short-term rodent toxicity	Х		
Subchronic rodent toxicity		Х	Х
Subchronic non-rodent toxicity		Х	
Reproduction with teratology		Х	Х
One-year non-rodent toxicity			Х
Rodent carcinogenicity			Х
Chronic rodent toxicity/carcinogenicity			Х

Indirect Food Additives

• Not added directly to food

May enter food through migration of packaging materials, holding containers or processing surfaces
Cans, cardboard, plastics, glass, etc.

Estimates of Indirect Additive Migration

Extraction Methods

- Solvents simulate food types
- Aqueous/acidic food 8% EtOH
- Alcoholic food 50% EtOH
- Fatty food corn oil or synthetic triglyceride
- Expose solvent to packaging material to extract

Indirect Additives Extraction Temperatures

- Different temps based projected processing method
- Retorted foods - 212°, 250°, 275° for 2 hrs and held 238 hr at 120°
- Refrigerated foods
- Same but held at 70°
 Frozen foods
 - Same but held 120 hrs

.

Indirect Food Additives Exposure Estimates

- Extraction data = how much in food
- Extraction data is converted to exposure estimates using
 - Consumption Factors (CF)
 - Food-type-distribution factors (fT)

CFs and fTs

- Consumption factor (CF) = amount of US diet that comes into contact with different kinds of holding materials (paper, metal, polymer)
- Food type (fT) = the fraction of food types for which each packaging material is used (aqueous/acidic, fatty, OH)

Consumption Factors

0.08

Total fraction of diet in contact with container

- Glass
- Metal, polymer coated 0.17
- Metal, uncoated
 0.03
- Paper, polymer coated 0.21
- Paper, uncoated 0.10
- Polymer
- 0.41

- Performed for each package category
- Fenomed for each package calego
- Glass, metal, paper, polymer

Food Type Distribution Factor (fT)						
	<u>AQU</u>	ACID	ОН	FAT		
Glass	0.08	0.36	0.47	0.09		
Metal, polymer coated	0.16	0.35	0.40	0.09		
 Metal, uncoated 	0.54	0.25	0.01	0.20		
• Paper, polymer coated	0.55	0.04	0.01	0.40		
 Paper, uncoated 	0.57	0.01	0.01	0.41		
Polymer	0.49	0.16	0.01	0.34		
49						

EDI of Indirect Food Additives

• EDI =

- CF x [(fT aqueous/acidic x ppm in 8% EtOH)
- + (fT alcoholic x ppm in 50% EtOH)
- + (fT fatty x ppm in corn oil)] x 3kg/person/day
- = mg/person/day
- CF = consumption factor
- fT = food type distribution
- factor
- 3 kg=daily food consumption

Indirect Additives EDI Summary

- EDI = (sum of fTs x extraction data in ppm) x 3kg/person/day x CF
- Total of EDIs cannot exceed ADI

Indirect Food Additives

- Negligible migration (< 0.05ppm) and EDI < 0.15mg/person/day
- Acute toxicity studies only
- Migration 0.05-1.0ppm
 Subchronic studies; 2 species
- Migration > 1.0ppm
- Chronic studies; 2 species
- Carcinogenicity
- Multigenerational reproduction
- Teratology

Threshold of Regulation

- New legislation on indirect food additives 1997
- Concentrations < 0.05 ppb and not carcinogenic
- Exempt from full-blown pre-market evaluation and petition review
- Assume negligible risk

FDA Modernization Act 1997

- Indirect food additives can be marketed 120 days after notifying FDA
- Burden of objection on FDA
- Significantly streamlined process
- FDA must review much faster

Dietary Supplements

- Regarded as food
- Not food additives or drugs
- Lesser standard of safety

 DS: no history of unsafe use
 - Additive: demonstrated safety
- No FDA unapproved health claims
 - Would then be a drug
 - Different safety testing

Delaney Clause and Food Additives

- Prohibits FDA approval of regulated food additives shown to cause cancer by appropriate tests
- Appropriate tests are usually animal studies

Delaney Clause Delaney Clause Order State Order Order State Order Order Order

FDA Carcinogenic Constituent Policy For Non-functional Carcinogenic Contaminants of Food Additives

• Delaney is not invoked

56

- · Health effects may be negligible
- Probabilistic RA model

Carcinogenic Constituent For Policy Risk Assessment Model

- Upper bound lifetime risk in humans < 1 in 10⁶ above background
- Many conservative estimates made in model
 Possibly over estimates risk by million-fold

De Minimis Concept

• De minimis non curat lex

- "The law does not concern itself with trifles"
- First involved insect and worm fragments in food – Cannot completely avoid
- Later applied to carcinogenic contaminants in food additives

60

•10

De Minimis Concept

- Most recently courts have not allowed FDA to invoke de minimis because Delaney language is specific
- FD&C orange 17
- Pesticide residues
- Resulted in FQPA changes

Carcinogenic Constituent Diethylstilbestrol (DES) Proviso

Permits addition of carcinogenic substances to animal feeds if no residues end up in edible tissues

Interpretation of Delaney: Food Additives

- RA cannot be used if food additive is carcinogenic
- Zero tolerance policy
- Very strict regulation
- FDA requires clear, unequivocal, reproducible evidence for cancer
- · Few substances banned

Interpretation of Delaney

- Must be primary carcinogen
- · Secondary carcinogenesis not considered evidence

Secondary Carcinogenesis

- Nutritional, hormonal, physiological imbalances are secondary causes of cancer
- Secondary carcinogens only contribute to increase (promote) effect
- No evidence of direct genotoxicity

Secondary Carcinogenesis

• BHA

66

64

 Chronic irritation = tissue damage = hyperplasia = cell proliferation = increased chance for mutation and cancer

Xylitol and sorbitol

 Calcium imbalance in gut exacerbated by fermentation of sugar alcohol

~~

63

Substances Banned by Delaney

- Packaging materials Flectol H, mercaptimidazoline
- Food additives safrole, cinnamyl anthranilate, thiourea, diethylpyrocarbonate (forms urethane)
- Primary carcinogens

Carcinogenic Food Additives

- BHA, xylitol, sorbitol, methylene chloride, TCE, melamine, formaldehyde, nitrilotriacetic acid, diethylhexyl phthalate, bentonite
- All listed by National Toxicology Program and International Agency for Regulation of Carcinogens
- All secondary carcinogenesis
 FDA approved

67

69

Delaney Clause

• Because of the strict nature of the Delaney Clause, the FDA requires clear and unequivocal proof that an additive is a carcinogen